May 21, 2024

Healt Hid

Because health is very important to us

Augmented non-hallucinating large language models as medical information curators

3 min read
  • Schulze-Kremer, S. & Smith, B. Ontologies for the life sciences in Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics, Vol. 4 (John Wiley and Sons, New York and London, 2005).

  • Hu, X. In Computational Systems Biology (eds. Kriete, A. & Eils, R.) Ch. 3 (Academic Press, Burlington, 2006).

  • Moy, A. J. et al. Measurement of clinical documentation burden among physicians and nurses using electronic health records: a scoping review. J. Am. Med. Inform. Assoc. 28, 998–1008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Welzel, C. et al. Holistic human-serving digitization of health care needs integrated automated system-level assessment tools. J. Med. Internet Res. 25, e50158 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lehne, M., Sass, J., Essenwanger, A., Schepers, J. & Thun, S. Why digital medicine depends on interoperability. npj Digit. Med. 2, 1–5 (2019).

    Article 

    Google Scholar 

  • Donnelly, K. SNOMED-CT: The advanced terminology and coding system for eHealth. Stud. Health Technol. Inform. 121, 279–290 (2006).

    PubMed 

    Google Scholar 

  • Köhler, S. et al. The human phenotype ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kreuzthaler, M., Brochhausen, M., Zayas, C., Blobel, B. & Schulz, S. Linguistic and ontological challenges of multiple domains contributing to transformed health ecosystems. Front. Med. 10, 1073313 (2023).

    Article 

    Google Scholar 

  • Newman-Griffis, D. et al. Ambiguity in medical concept normalization: an analysis of types and coverage in electronic health record datasets. J. Am. Med. Inform. Assoc. 28, 516–532 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • Hogan, A. et al. Knowledge graphs. ACM Comput. Surv. 54, 1–71 (2021).

    Article 

    Google Scholar 

  • Chen, J. et al. Knowledge graphs for the life sciences: recent developments, challenges and opportunities. arXiv 5, 1–5 (2023).

  • Hahn, U. & Oleynik, M. Medical information extraction in the age of deep learning. Yearb Med. Inform. 29, 208–220 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Min, B. et al. Recent advances in natural language processing via large pre-trained language models: a survey. ACM Comput. Surv. 56, 1–40 (2024).

    Article 

    Google Scholar 

  • Jiang, L. Y. et al. Health system-scale language models are all-purpose prediction engines. Nature 619, 357–362 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clusmann, J. et al. The future landscape of large language models in medicine. Commun. Med. 3, 1–8 (2023).

    Article 

    Google Scholar 

  • Manning, C. D. Human language understanding & reasoning. Daedalus 151, 127–138 (2022).

    Article 

    Google Scholar 

  • Liao, L., Yang, G. H. & Shah, C. Proactive conversational agents in the post-chatGPT world. in Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval 3452–3455 (Association for Computing Machinery, NY, 2023).

  • Truhn, D., Reis-Filho, J. S. & Kather, J. N. Large language models should be used as scientific reasoning engines, not knowledge databases. Nat. Med. 29, 2983–2984 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Truhn, D. et al. Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4). J. Pathol. 265, 310–319 (2023).

  • Truhn, D. et al. A pilot study on the efficacy of GPT-4 in providing orthopedic treatment recommendations from MRI reports. Sci. Rep. 13, 20159 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giuffrè, M., You, K. & Shung, D. L. Evaluating chatGPT in medical contexts: the imperative to guard against hallucinations and partial accuracies. Clin. Gastroenterol. Hepatol. S1542-3565, 00835–2 (2023).

    Google Scholar 

  • Gilbert, S., Harvey, H., Melvin, T., Vollebregt, E. & Wicks, P. Large language model AI chatbots require approval as medical devices. Nat. Med. 29, 2396–2398 (2023).

  • Munn, L., Magee, L. & Arora, V. Truth machines: synthesizing veracity in AI language models. AI & Soc. (2023).

  • Pan, J. Z. et al. Large language models and knowledge graphs: opportunities and challenges. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK). 1, 2:1-2:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) (2023).

  • Cenikj, G. et al. From language models to large-scale food and biomedical knowledge graphs. Sci. Rep. 13, 7815 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Sci. Data. 10, 67 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajabi, E. & Etminani, K. Knowledge-graph-based explainable AI: a systematic review. J. Inf. Sci. (2022).

  • Guo, Q., Cao, S. & Yi, Z. A medical question answering system using large language models and knowledge graphs. Int. J. Intelligent Syst. 37, 8548–8564 (2022).

    Article 

    Google Scholar 

  • Wornow, M. et al. The shaky foundations of large language models and foundation models for electronic health records. npj Digit. Med. 6, 1–10 (2023).

    Article 

    Google Scholar 

  • Howell, M. D., Corrado, G. S. & DeSalvo, K. B. Three epochs of artificial intelligence in health care. JAMA 331, 242–244 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Zakka, C. et al. Almanac—retrieval-augmented language models for clinical medicine. NEJM AI. (2024).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.